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Coupled synchronization of spatiotemporal chaos
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The synchronization of spatiotemporal chaos is very important in secure communication. In this paper, we
present an approach of nonlinear coupling to implement the synchronization of spatiotemporal chaos. Two
cases are considered. The first is the same systems with same parameters; the second is the same systems with
different parameters. And the largest Lyapunov exponent spectra are calculated. Our numerical simulation
shows that the mutual coupling can induce generalized synchronizEb863-651X99)02302-§

PACS numbd(s): 05.45—a, 45.05+x

I. INTRODUCTION (1) with N>1 has been also extensively investigated and
quite well understood. It has many positive Lyapunov expo-
Chaos synchronization has recently aroused a great deaknts wherN is large. And the number of positive Lyapunov

of interest in the light of potential applications in engineeingexponents will increase with the increasing of the system
[1]. Techniques based on the Pecora-Carroll method hav&ze N. In this paper we will present a nonlinear coupling
been very successful for synchronizing chaos in low-approach to implement the mutual synchronization of two
dimensional systemg-6]. People extended the concept of CML systems. We here prove the possibility of the mutual
identical synchronizatioflS) to generalized synchronization synchronization of regular or chaotic space patterns of two
(G [7-9]. It equates dynamical variables from subsysteminteracting lattices. We consider two kinds of synchroniza-
with a function of the variables of another subsystem andion in two coupled map lattice dynamical systems. The first
exists in directionally coupled chaotic system. Synchronizings the same CML models with the same parameters, the sec-
spatiotemporal systems remains a challefif®-14, how- ond is the same CML models with different parameters. We
ever, because the chaotic states in such systems are typicafipd that the GS can be obtained in these cases.
high dimensional, involving multiple stable and unstable We have organized this paper as follows. In Sec. Il a brief
modes. There are some great advantages of spatiotemporiscription of the nonlinear coupled algorithm and some re-
chaos in comparison with low-dimensional chaos. The inforsults of numerical experiments are presented. Then, in Sec.
mation operations can be performed simultaneously and ifil, the second case is discussed. Finally, Sec. IV gives the
parallel by many subunits if one can properly drive and conexplanation of the mutual synchronization by Lyapunov ex-
trol extended systems, and thus the efficiency of informatiopponent spectra and some conclusions.
treatment can be significantly enhanced. The potential for the

applications of spatiotemporal chaos control and synchroni-|; coupPLED SYNCHRONIZATION IN THE SAME CML

zation is eXtremely great and unlimited. MODELS WITH THE SAME PARAMETERS
Recently, researchers have studied the collective behavior

of systems consisting of a large number of coupled identical Consider two of the same CML mode(ls) with different
units [10,15-18. Such models may represent active net-initial points, where one is &(i) system and anotherygi)
works with elements located in the junctions of a discretesystem. The lattice length is taken to be=60, and the
space lattice. Lai and Winsloj9] studied the dynamics of initial condition is prepared as pseudorandom numbers uni-
spatiotemporal chaotic systems described by systems d&@rmly distributed in the interval0,1]. Afterwards, we will
coupled Haon maps and coupled Duffing equations, andalways takeN=60 and use such an initial condition unless
found the extreme sensitivity of asymptotic attractors to botrspecified otherwise. Here we take

initial conditions and parameters. In this paper we consider a

well-known coupled map lattic€CML) model[20,21], f(x(i))=ax()[1—x(i)],

Xn+1(1)=(1—€)f (X)) + 7 e[ F (xn(i — 1))+ f (xn(i + 1))], fiy(i))=ay(h[1-y()], i=12...N. 2

(1)
wherei=1,2,...N are the lattice sites, and the system Substituting Eq(2) into Eq. (1) one gets a pair of systems
size. And periodic boundary conditions,(i + N)=x,(i), is  with N dimensional. These lattice systems representing spa-
assumed. Moreover, we takg¢x) =ax(1—x). With single tially extended dynamical systems may exhibit attractors
site (N=1), model(1) reduces to the well-known Logistic which are chaotic not only in time but also in space. Figure 1
map, which has a period-doubling cascade with the accumwshows the phase portrait of no coupling between the two
lation point ata,=3.5699456. . ., andchaos can be found CML models for different initial points whea=3.7, where
in the regimea,<a<4. The dynamical behavior of model x(i) represents all of the values bf sites.
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FIG. 1. The phase portrait of no coupling, where 3.7 and the

gyn(i):(l_ €)PYn()LYn(i) —Xn(i)]
+2€p{Yn(i = DYa(i—1) = xp(i—1)]
+yn(i+l)[yn(i+1)_xn(i+1)]}! (4)

where p is the coupling strengthe a constant in[0,1].
Throughout this paper we take=0.8. Now we consider the
evolution of differencey, (i) —x,(i),i=1,2,...N. Making
linear approximation, from Eq$3) and (4) we have

Ynr1(D)=Xn1(D)=Z;;0yn(j), 1,j=1,2,...N. (5

When we choose a suitable paramgtewe can let all of the

initial condition is prepared as pseudo-random numbers uniformlyabsolute values of eigenvalues |@ become smaller than

distributed in the intervd]0,1].

unit, and then the two lattice systems can become synchro-
nized. Otherwise, the synchronization will not appear. Figure

To synchronize these systems, we use nonlinear coupling SNOWs the results whem=0.87, where(a) and (b) repre-

in the following way:

Xnt1(1)=(1—€)f(xn(i))
+%6[f(xn(i — 1)+ f(Xp(i+1)]+gxn(i),

Y+1(1)=(1=e)f(yn(i))
+2e[f(yn(i—= 1)+ f(ya(i +1D]+gyn(i) (3)

with

Gxn(1)= (1= €)pXa(1)[Xn(i) =Yyn(i))
+3ep{Xn(i—1)[Xp(i—1)—yn(i—1)]
+Xn(i + 1)[Xn(i +1)_yn(i +1)]},

Sent the evolution of(i) andy(i) systems, respectively, and
(c) error dynamics betweex(i) andy(i) systems. Compar-
ing Fig. Aa) with Fig. 2(b) one can find that they have simi-
lar behavior whert>20. However, Fig. &) shows that the
differencesy(i)—x(i) do not go to zero. What is the reason
for this phenomenon? Testing one couple of sites of the sys-
tems, we find that they become time-period-four when the
synchronization is implemented. Figure 3 shows the local
structure. It is interesting to find that from Fig(cB one can
see that the differencg(10)—x(10) is near zero when
<10 and suddenly becomes time-period-four wheri5. It
illustrates that the two corresponding sites is becoming IS
when t<10. That is because, the coupling between these
maps is nonlinear, but at the same time it is proportional to
differences,y(i) —x(i). Therefore there exists an identity
synchronization manifold on whick,(t) =y,(t) is satisfied

for some values op. Thus we expect the two chains to be
identicaly synchronized and still remain spatiotemporally
chaotic. However, with the proceeding of coupling, the two

FIG. 2. Coupling behaviors whem=0.87.(a) x(i) system;(b) y(i) system;(c) error dynamics.
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FIG. 3. Spatiotemporal evolution for one couple of sites wher0.87.(a) x(i) system;(b) y(i) system;(c) error dynamics.

coupled systems become periodic states. If we put K. 3 represents the behavior of each sitexii) system whert
and Fig. 3b) together, we can find that the orbits of the two =30.0, (b) the behavior of each site (i) system whert
systems can completely overlap wher20. It illustrates =30.0-60.0, and(c) errors variation in space wheh
that there is a phase difference between the two correspone-30.0-60.0. From Fig.(4) one can see that every site stays
ing sites whert>15. This conclusion is kept for other sites. in different states at some time. And Figb%tells us that
So this synchronization is just GS-9] in which the syn-  every site is in time-period-four and all these time-period-
chronization relationship is of the forgn= ¢(x(t)). For con-  fours are in fixed positions. So the whole system is time-
creteness, we takg,=x;,_, which is called the space-shift period-four.

and time-delay synchronization. For getting more detail in- On the other hand, for most of the coupling strengths

formation we investigate the space behavior of the twahe coupled systems do not become periodic states and re-
coupled CML systems. Figure 4 shows the results wii@re main in chaotic states.
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FIG. 4. Space-time diagram wher=0.87.(a) The behavior of each site in the€i) system wheri=30.0; (b) the behavior of each site
in the x(i) system whert=30.0-60.0;(c) errors variation in space whenr-30.0—60.0.
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325;68' 2':%"60; dynamics for one couple of sites whe=3.7, FIG. 7. Largest Lyapunov exponent spectra of the same CML

models with the same parameters.
Ill. COUPLED SYNCHRONIZATION IN THE SAME CML

MODELS WITH DIFFERENT PARAMETERS an explanation in terms of Lyapunov exponents, which mea-
sure the growth of small perturbations of the differences be-
ween the two systems. We know that under suitable cou-
pling strength one system will run following another system

of Eqg. (2) as an example and let the parameter of xfig ifits | t ditional L ti . q
system bea;=3.7 and the parameter of th&€i) system be IT LS largest conditional Lyapunov exponent Is neégative, an
he two systems will not run in chaotic states but only some

a,=3.8, and others are the same as those in Sec. Il. Considf’ X )
ering the same coupling of EqE3) and (4), our numerical  SPecial structures if the largest Lyapunov exponent of the
simulation shows that the difference between the two cMLWhole coupled systems is negative. There must be some
systems do not become zero or constants but some specfgnsform relationship between the two special structures.
structures. Figure 5 shows the result of one couple of sitesthe two systems are IS when the transform relation is iden-
where the coupling strength=0.62. Obviously, the differ- tity, otherwise they are GS.

ence, y(10)—x(10), becomes four curves wher50.0. How can one calculate the largest Lyapunov exponent of
Comparing Fig. 5 with Fig. @) one can see that they have the whole system? We know that the whole systemNs 2
two different points. The first is that the synchronized time ofdimensional. Now we construct an aided system nearby in
Fig. 5 is much longer than Fig.(8, and the second is that the original system. The distance between the aided and
the difference of Fig. @) is a straight line but Fig. 5 is a original systems isy=2Y, 5%x,(i). With the evolution of
curve. Does the other sites have the similar behavior? Figurgme, this distance will expand along the largest eigenvalue

6 shows the behavior of spatiotemporal synchronizationgirection. So the largest Lyapunov exponent can be obtained
where(a) represents system(i) and(b) systemy(i). Com-  ~< follows:

paring Fig. §a) with Fig. 6(b) one can see that they have

some similarity. Considering Fig. 5 and Fig. 6 at the same [2N

time one can see that there is some transformation relation 82x,(i)
between the two CML systems. So they are GS. 1 = t

In this section, we discuss the case of the same CM
models with different parameters. We also use the functio

Practically speaking, it is impossible to have two identical A=Ilim - In———. (6)
chaotic systems. The practical synchronization occurs be- toe b 2N
tween two slightly different chaotic systems. So this kind of 2 0%%q(i)
synchronization with different parameters has special impor- =1

tance in practical communication. Figure 7 shows the results of the case of same CML models

with same parameters. Figure 8 shows the results of the case

of same CML models with different parameters. From Fig. 7
What is the reason for the mutual coupling to induce theand Fig. 8 we know that the largest Lyapunov exponents are

systems to become periodic and then IS or GS? One can giveegative when the coupling strengghis in some narrow

60 60 r

IV. LYAPUNOV EXPONENT SPECTRA

40 40

20

FIG. 6. Space-time diagram wheag=3.7,a,=3.8,p=0.62, and the ordinate denotes the positions of sites. Pixels are painted black if
X(i)=0.98 (or y(i)=0.98), and left blank otherwiséa) x(i) system;(b) y(i) system.
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implemented for the system in isolatiop£0). When cou-
pling strengthp is larger than some valugt is 2.17 for the
case of same parameters, and 2.18 for the case of different
parameters the systems just have runaway solution because
the coupling strength is too strong.

In conclusion, we have discussed the mutual synchroniza-
tion of spatiotemporal chaos induced by nonlinear coupling.
The GS will appear when the coupling strength is suitable,
and the systems will have runaway solution when the cou-
pling strength is too strong. It has some practical importance
for the appearance of GS in the case of different parameters.
These phenomena can be explanated by the largest
Lyapunov exponent spectra.

FIG. 8. Largest Lyapunov exponent spectra of the same CML
models with different parameters.
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