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Coupled synchronization of spatiotemporal chaos
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The synchronization of spatiotemporal chaos is very important in secure communication. In this paper, we
present an approach of nonlinear coupling to implement the synchronization of spatiotemporal chaos. Two
cases are considered. The first is the same systems with same parameters; the second is the same systems with
different parameters. And the largest Lyapunov exponent spectra are calculated. Our numerical simulation
shows that the mutual coupling can induce generalized synchronization.@S1063-651X~99!02302-8#

PACS number~s!: 05.45.2a, 45.05.1x
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I. INTRODUCTION

Chaos synchronization has recently aroused a great
of interest in the light of potential applications in engineei
@1#. Techniques based on the Pecora-Carroll method h
been very successful for synchronizing chaos in lo
dimensional systems@2–6#. People extended the concept
identical synchronization~IS! to generalized synchronizatio
~GS! @7–9#. It equates dynamical variables from subsyst
with a function of the variables of another subsystem a
exists in directionally coupled chaotic system. Synchroniz
spatiotemporal systems remains a challenge@10–14#, how-
ever, because the chaotic states in such systems are typ
high dimensional, involving multiple stable and unstab
modes. There are some great advantages of spatiotem
chaos in comparison with low-dimensional chaos. The inf
mation operations can be performed simultaneously an
parallel by many subunits if one can properly drive and c
trol extended systems, and thus the efficiency of informat
treatment can be significantly enhanced. The potential for
applications of spatiotemporal chaos control and synchr
zation is extremely great and unlimited.

Recently, researchers have studied the collective beha
of systems consisting of a large number of coupled ident
units @10,15–18#. Such models may represent active n
works with elements located in the junctions of a discr
space lattice. Lai and Winslow@19# studied the dynamics o
spatiotemporal chaotic systems described by system
coupled He´non maps and coupled Duffing equations, a
found the extreme sensitivity of asymptotic attractors to b
initial conditions and parameters. In this paper we consid
well-known coupled map lattice~CML! model @20,21#,

xn11~ i !5~12e! f „xn~ i !…1 1
2 e@ f „xn~ i 21!…1 f „xn~ i 11!…#,

~1!
where i 51,2, . . .N are the lattice sites, andN the system
size. And periodic boundary conditions,xn( i 1N)5xn( i ), is
assumed. Moreover, we takef (x)5ax(12x). With single
site (N51), model~1! reduces to the well-known Logisti
map, which has a period-doubling cascade with the accu
lation point atac53.569 945 6. . . , andchaos can be found
in the regimeac,a,4. The dynamical behavior of mode
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~1! with N.1 has been also extensively investigated a
quite well understood. It has many positive Lyapunov exp
nents whenN is large. And the number of positive Lyapuno
exponents will increase with the increasing of the syst
size N. In this paper we will present a nonlinear couplin
approach to implement the mutual synchronization of t
CML systems. We here prove the possibility of the mutu
synchronization of regular or chaotic space patterns of
interacting lattices. We consider two kinds of synchroniz
tion in two coupled map lattice dynamical systems. The fi
is the same CML models with the same parameters, the
ond is the same CML models with different parameters. W
find that the GS can be obtained in these cases.

We have organized this paper as follows. In Sec. II a b
description of the nonlinear coupled algorithm and some
sults of numerical experiments are presented. Then, in S
III, the second case is discussed. Finally, Sec. IV gives
explanation of the mutual synchronization by Lyapunov e
ponent spectra and some conclusions.

II. COUPLED SYNCHRONIZATION IN THE SAME CML
MODELS WITH THE SAME PARAMETERS

Consider two of the same CML models~1! with different
initial points, where one is ax( i ) system and another ay( i )
system. The lattice length is taken to beN560, and the
initial condition is prepared as pseudorandom numbers
formly distributed in the interval@0,1#. Afterwards, we will
always takeN560 and use such an initial condition unle
specified otherwise. Here we take

f „x~ i !…5ax~ i !@12x~ i !#,

f „y~ i !…5ay~ i !@12y~ i !#, i 51,2, . . . ,N. ~2!

Substituting Eq.~2! into Eq. ~1! one gets a pair of system
with N dimensional. These lattice systems representing s
tially extended dynamical systems may exhibit attract
which are chaotic not only in time but also in space. Figur
shows the phase portrait of no coupling between the
CML models for different initial points whena53.7, where
x( i ) represents all of the values ofN sites.
2817 ©1999 The American Physical Society
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To synchronize these systems, we use nonlinear coup
in the following way:

xn11~ i !5~12e! f „xn~ i !…

1 1
2 e@ f „xn~ i 21!…1 f „xn~ i 11!…#1gxn~ i !,

yn11~ i !5~12e! f „yn~ i !…

1 1
2 e@ f „yn~ i 21!…1 f „yn~ i 11!…#1gyn~ i ! ~3!

with

gxn~ i !5~12e!pxn~ i !@xn~ i !2yn~ i !!

1 1
2 ep$xn~ i 21!@xn~ i 21!2yn~ i 21!#

1xn~ i 11!@xn~ i 11!2yn~ i 11!#%,

FIG. 1. The phase portrait of no coupling, wherea53.7 and the
initial condition is prepared as pseudo-random numbers unifor
distributed in the interval@0,1#.
ng

gyn~ i !5~12e!pyn~ i !@yn~ i !2xn~ i !#

1 1
2 ep$yn~ i 21!@yn~ i 21!2xn~ i 21!#

1yn~ i 11!@yn~ i 11!2xn~ i 11!#%, ~4!

where p is the coupling strength,e a constant in@0,1#.
Throughout this paper we takee50.8. Now we consider the
evolution of differenceyn( i )2xn( i ),i 51,2, . . .N. Making
linear approximation, from Eqs.~3! and ~4! we have

yn11~ i !2xn11~ i !5Zi j dyn~ j !, i , j 51,2, . . .N. ~5!

When we choose a suitable parameterp, we can let all of the
absolute values of eigenvalues ofuZu become smaller than
unit, and then the two lattice systems can become sync
nized. Otherwise, the synchronization will not appear. Fig
2 shows the results whenp50.87, where~a! and ~b! repre-
sent the evolution ofx( i ) andy( i ) systems, respectively, an
~c! error dynamics betweenx( i ) andy( i ) systems. Compar-
ing Fig. 2~a! with Fig. 2~b! one can find that they have sim
lar behavior whent.20. However, Fig. 2~c! shows that the
differencesy( i )2x( i ) do not go to zero. What is the reaso
for this phenomenon? Testing one couple of sites of the s
tems, we find that they become time-period-four when
synchronization is implemented. Figure 3 shows the lo
structure. It is interesting to find that from Fig. 3~c! one can
see that the differencey(10)2x(10) is near zero whent
,10 and suddenly becomes time-period-four whent.15. It
illustrates that the two corresponding sites is becoming
when t,10. That is because, the coupling between th
maps is nonlinear, but at the same time it is proportiona
differences,y( i )2x( i ). Therefore there exists an identit
synchronization manifold on whichxn(t)5yn(t) is satisfied
for some values ofp. Thus we expect the two chains to b
identicaly synchronized and still remain spatiotempora
chaotic. However, with the proceeding of coupling, the tw

ly
FIG. 2. Coupling behaviors whenp50.87. ~a! x( i ) system;~b! y( i ) system;~c! error dynamics.
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FIG. 3. Spatiotemporal evolution for one couple of sites whenp50.87. ~a! x( i ) system;~b! y( i ) system;~c! error dynamics.
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coupled systems become periodic states. If we put Fig.~a!
and Fig. 3~b! together, we can find that the orbits of the tw
systems can completely overlap whent.20. It illustrates
that there is a phase difference between the two corresp
ing sites whent.15. This conclusion is kept for other site
So this synchronization is just GS@7–9# in which the syn-
chronization relationship is of the formy5f„x(t)…. For con-
creteness, we takeyn

i 5xn2k
i 2 j , which is called the space-shi

and time-delay synchronization. For getting more detail
formation we investigate the space behavior of the t
coupled CML systems. Figure 4 shows the results where~a!
d-

-
o

represents the behavior of each site inx( i ) system whent
530.0, ~b! the behavior of each site inx( i ) system whent
530.0– 60.0, and~c! errors variation in space whent
530.0–60.0. From Fig. 4~a! one can see that every site sta
in different states at some time. And Fig. 4~b! tells us that
every site is in time-period-four and all these time-perio
fours are in fixed positions. So the whole system is tim
period-four.

On the other hand, for most of the coupling strengthsp,
the coupled systems do not become periodic states and
main in chaotic states.
FIG. 4. Space-time diagram whenp50.87.~a! The behavior of each site in thex( i ) system whent530.0; ~b! the behavior of each site
in the x( i ) system whent530.0–60.0;~c! errors variation in space whent530.0–60.0.
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III. COUPLED SYNCHRONIZATION IN THE SAME CML
MODELS WITH DIFFERENT PARAMETERS

In this section, we discuss the case of the same C
models with different parameters. We also use the func
of Eq. ~2! as an example and let the parameter of thex( i )
system bea153.7 and the parameter of they( i ) system be
a253.8, and others are the same as those in Sec. II. Con
ering the same coupling of Eqs.~3! and ~4!, our numerical
simulation shows that the difference between the two C
systems do not become zero or constants but some sp
structures. Figure 5 shows the result of one couple of s
where the coupling strengthp50.62. Obviously, the differ-
ence, y(10)2x(10), becomes four curves whent.50.0.
Comparing Fig. 5 with Fig. 3~c! one can see that they hav
two different points. The first is that the synchronized time
Fig. 5 is much longer than Fig. 3~c!, and the second is tha
the difference of Fig. 3~c! is a straight line but Fig. 5 is a
curve. Does the other sites have the similar behavior? Fig
6 shows the behavior of spatiotemporal synchronizati
where~a! represents systemx( i ) and~b! systemy( i ). Com-
paring Fig. 6~a! with Fig. 6~b! one can see that they hav
some similarity. Considering Fig. 5 and Fig. 6 at the sa
time one can see that there is some transformation rela
between the two CML systems. So they are GS.

Practically speaking, it is impossible to have two identic
chaotic systems. The practical synchronization occurs
tween two slightly different chaotic systems. So this kind
synchronization with different parameters has special imp
tance in practical communication.

IV. LYAPUNOV EXPONENT SPECTRA

What is the reason for the mutual coupling to induce
systems to become periodic and then IS or GS? One can

FIG. 5. Error dynamics for one couple of sites whena153.7,
a253.8, p50.62.
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an explanation in terms of Lyapunov exponents, which m
sure the growth of small perturbations of the differences
tween the two systems. We know that under suitable c
pling strength one system will run following another syste
if its largest conditional Lyapunov exponent is negative, a
the two systems will not run in chaotic states but only so
special structures if the largest Lyapunov exponent of
whole coupled systems is negative. There must be so
transform relationship between the two special structu
The two systems are IS when the transform relation is id
tity, otherwise they are GS.

How can one calculate the largest Lyapunov exponen
the whole system? We know that the whole system isN
dimensional. Now we construct an aided system nearby
the original system. The distance between the aided
original systems isA( i 51

2N d2x0( i ). With the evolution of
time, this distance will expand along the largest eigenva
direction. So the largest Lyapunov exponent can be obtai
as follows:

l5 lim
t→`

1

t
ln

A(
i 51

2N

d2xt~ i !

A(
i 51

2N

d2x0~ i !

. ~6!

Figure 7 shows the results of the case of same CML mod
with same parameters. Figure 8 shows the results of the
of same CML models with different parameters. From Fig
and Fig. 8 we know that the largest Lyapunov exponents
negative when the coupling strengthp is in some narrow

FIG. 7. Largest Lyapunov exponent spectra of the same C
models with the same parameters.
ack if
FIG. 6. Space-time diagram wherea153.7,a253.8, p50.62, and the ordinate denotes the positions of sites. Pixels are painted bl
x( i )>0.98 ~or y( i )>0.98), and left blank otherwise.~a! x( i ) system;~b! y( i ) system.



n

ig
b

rent
use

iza-
ng.
le,

ou-
nce
ters.
gest

ral
ina
up-
nts
-

M

PRE 59 2821COUPLED SYNCHRONIZATION OF SPATIOTEMPORAL CHAOS
intervals and positive otherwise. It means that GS can o
be implemented in these narrow intervals ofp. The above
considered cases ofp50.87 in Sec. II andp50.62 in Sec. III
are just in these narrow intervals ofp. Especially, whenp
50, the largest Lyapunov exponents are positive in both F
7 and Fig. 8. It means that the synchronization cannot

FIG. 8. Largest Lyapunov exponent spectra of the same C
models with different parameters.
ys

s.

s.
ly

.
e

implemented for the system in isolation (p50). When cou-
pling strengthp is larger than some value~It is 2.17 for the
case of same parameters, and 2.18 for the case of diffe
parameters!, the systems just have runaway solution beca
the coupling strength is too strong.

In conclusion, we have discussed the mutual synchron
tion of spatiotemporal chaos induced by nonlinear coupli
The GS will appear when the coupling strength is suitab
and the systems will have runaway solution when the c
pling strength is too strong. It has some practical importa
for the appearance of GS in the case of different parame
These phenomena can be explanated by the lar
Lyapunov exponent spectra.
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